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Abstract 

This paper reports a numerical study of the magnetohydrodynamic(MHD) free convection heat 

transfer taking into account heat generation in presence of heat conduction. The developed 

governing equations and the associated boundary conditions for this analysis are transferred to 

dimensionless forms using a suitable transformation. The transformed non-dimensional 

governing equations are then solved using the implicit finite difference method with Keller box-

scheme. Numerical outcomes are found for different values of the Magnetic parameter and heat 

generation parameter in terms of velocity profiles, temperature distributions, skin friction 

coefficient and heat transfer rate. All these results are shown graphically with a complete 

discussion. 
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Introduction 

The conjugate heat transfer process (CHT) formed by the interaction between the conduction 

inside the solid and the convection flow along the solid surface has significant importance in 

many practical applications. In fact, conduction within the tube wall is significantly influenced by 

the convection in the surrounding fluid. On the other hand, many practical heat transfer 

applications involve the conversion of some form of energy into thermal energy in the medium. 

Such mediums are said to involve internal heat generation. The study of heat generation in 

moving fluids is important specially when it deals with chemical reaction. Possible heat 

generation effects may modify temperature distribution and, therefore, particle deposition rate. 

Consequently, the conduction and heat generation in the solid body and the convection in the 

fluid should have to be determined simultaneously. 

 

The natural convection flow of an incompressible and viscous fluid from horizontal cylinder was 

studied by several research groups [1-4]. In these studies, wall conduction resistance for the 

convective heat transfer and internal heat generation was ignored. 
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Gdalevich and Fertman [5] studied the conjugate problems of natural convection. Miyamoto et al. 

[6] analysed the effects of axial heat conduction in a vertical flat plate on free convection heat 

transfer. Miyamoto observed that a mixed-problem study of the natural convection has to be 

performed for an accurate analysis of the thermo-fluid-dynamic (TFD) field, if the convective 

heat transfer depends strongly on the thermal boundary conditions. Pozzi et al. [7] investigated 

the entire TFD field resulting from the coupling of natural convection along and conduction 

inside a heated flat plate by means of two expansions, regular series and asymptotic expansions. 

Moreover, Kimura and Pop [8] analysed conjugate natural convection from a horizontal circular 

cylinder.  

 

The heat transfer in a laminar boundary layer flow of a viscous fluid over a linearly stretching 

continuous surface with viscous dissipation/frictional heating and internal heat generation was 

analyzed by Vajravelu and Hadjinicolaou [9]. They considered the volumetric rate of heat 

generation, q ′′′ [W/m
3
], as ( ) ∞∞ ≥−=′′′ TTforTTQq ff ,0 and ∞<=′′′ TTforq f,0 , where 0Q is 

the heat generation, constant. The above relation is valid for the state of some exothermic 

processes having ∞T as onset temperature. In the present study we considered the above term as 

heat generation. 

  

Magnetohydrodynamic (MHD) flow and heat transfer process are now an important research area 

due to its potential application in engineering and industrial fields. A considerable amount of 

research has been done in this field. Wilks et al. [10] studied MHD free convection about a semi-

infinite vertical plate in a strong cross field. Takhar and Soundalgekar [11] investigated 

dissipation effects on MHD free convection flow past a semi-infinite vertical plate. Hossain [12] 

studied viscous and Joule heating effects on MHD free convection flow with variable plate 

temperature. Aldoss et al. [13] analysed MHD mixed convection from a horizontal circular 

cylinder. El-Amin [14] found out the combined effect of viscous dissipation and Joule heating on 

MHD forced convection over a non-isothermal horizontal circular cylinder embedded in a fluid 

saturated porous medium.  

 

To our best knowledge, the effect of MHD free convection considering internal heat generation of 

the surrounding fluid in presence of heat conduction from an isothermal circular cylinder has not 

been studied yet. In this paper, the effect of heat generation on MHD free convection flow from 

an isothermal horizontal circular cylinder in presence of heat conduction is considered.  
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Mathematical Analysis 

Let us consider a steady natural convection flow of a viscous incompressible and electrically 

conducting fluid from an isothermal horizontal circular cylinder of radius a placed in a fluid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of uniform temperature ∞T . The cylinder has a heated core region of temperature bT  and the 

normal distance from inner surface on the outer surface is b with ∞> TTb . A uniform magnetic 

field having strength 0B is acting normal to the cylinder surface. The x-axis is taken along the 

circumference of the cylinder measured from the lower stagnation point and the y-axis is taken 

normal to the surface.  It is assumed that the fluid properties are constant and the induced 

magnetic field is ignored. Under the balance laws of mass, momentum and energy and with the 

help of Boussinesq approximation for the body force term in the momentum equation, the 

equations governing this boundary-layer natural convection flow can be written as: 

 

0=
∂

∂
+

∂

∂

y

v

x

u
 

(1) 

( )
ρ

σ
βν

uB

a

x
TTg

y

u

y

u
v

x

u
u f

2

0

2

2

sin −












−+

∂

∂
=

∂

∂
+

∂

∂
∞

 
(2) 

( )∞−+
∂

∂
=

∂

∂
+

∂

∂
TT

c

Q

y

T

cy

T
v

x

T
u f

p

f

p

fff

ρρ

κ
0

2

2

 

 

(3) 

The appropriate boundary conditions for the problem 
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Fig. 1: Physical Model and coordinate system 
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The governing equations and the boundary conditions (1)-(4) can be made non-dimensional, 

using the Grashof number 
23 /)]([ νβ ∞−= TTagGr b  which is assumed large and the following 

non-dimensional variables: 
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where θ  is the dimensionless temperature. The non dimensional form of the equations (1)-(3) are 

as follows: 
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where ( ) ( )2/12

0

2 / GrBaM ρνσ= is the magnetic parameter, ( ) ( )2/12

0 / GrcaQQ pρν=   is the 

heat generation parameter and  ( ) ( )fpcPr κµ /=  is the Prandtl number.  

The boundary condition (4) can be written as it is in the following dimensionless form: 
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where ( ) ( )sf aGrbp κκ /4/1=  is the conjugate conduction parameter. The present problem is 

governed by the magnitude of p. The values of p depends on ab / ,  sf κκ / and Gr . These ratios 

ab / and 
sf κκ / are less than one where as Gr  is large for free convection. Therefore the value of 

p is equal to zero (b =0) or greater than zero. In the present investigation we considered p=1 to 

ensure the presence of heat conduction.  

To solve equation (6)-(8), subject to the boundary condition (9), we assume following 

transformations: 

( )yxfx ,=ψ , ),( yxθθ =  (10) 

where ψ  is the stream function usually defined as 

yu ∂∂= /ψ , xv ∂−∂= /ψ . (11) 

Substituting (11) into the equations (6)-(9), new forms of the equations (7) and (8) are: 










∂

∂
′′−

∂

′∂
′=+′−′−′′+′′′

x

f
f

x

f
fx

x

x
fMffff

sin2 θ  

 

(12) 



Effect of heat generation on magnetohydrodynamic  125 

 125










∂

∂
′−

∂

∂
′=+′+′′

x

f

x
fxQf θ

θ
θθθ

Pr

1
 

(13) 

In the above equations primes denote differentiation with respect to y. The corresponding 

boundary conditions take the following form  
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If the value of p is taken to be zero, the boundary condition in equation (9) will change to  
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The present problem with M=0.0 in equation (12) and Q=0.0 in equation (13) and the boundary 

conditions described in equation (15) are the problems which were introduced by Merkin [1]. 

 

The principle physical quantities, the shearing stress and the rate of heat transfer in terms of skin 

friction coefficient fC and Nusselt number Nu respectively can be written as 

)0,(4/1
xfxGrC f

′′= , )0,(
4/1

xGrNu θ−=−
 (16) 

The results of the velocity profiles and the temperature distributions can be calculated by the 

following relations respectively: 

  ),( yxfu ′= , ),( yxθθ =  (17) 

 

Method of Solution 

Equations (12) and (13) are solved numerically based on the boundary conditions as described in 

equation (14) and (15) using one of the most efficient and accurate methods known as implicit 

finite difference method [16] with Keller box scheme [15]. 

 

Results and Discussion 

The main objective of the present work is to analyze the flow of the fluid and the heat transfer 

processes due to the heat generation on MHD conjugate free convection flow from an isothermal 

horizontal circular cylinder. The value of the Prandtl number Pr = 1.0 is considered for the 

simulation that corresponds to steam.  

 

A comparison of the local Nusselt number and the local skin friction factor obtained in the 

present work with M = 0.0, Q = 0.0,  p = 0.0 and Pr = 1.0 and obtained by Merkin [1] and Nazar 

et al. [14] have been shown in Table 1. There is an excellent agreement among these three results.  

The velocity and the temperature distributions at 6/π=x  against y for different values of heat 

generation parameter Q, with M = 0.2 are shown in fig.2(a)-(b). It is observed from these two 

figures that both the velocity and the temperature increase for the increasing values of heat 

generation parameter. It is expected because heat generation in the fluid increases the temperature 
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within the boundary layer which accelerates the convection as well as increases the flow within 

the boundary layer. Fig. 3(a)-(b) represents the local skin friction coefficients and the local 

Nusselt number against x for different values of heat generation parameter Q. The fluid flow 

accelerates with increasing Q accordingly, it enhances the local skin friction coefficient as 

observed in fig.3(a). From fig. 3(b) it is observed that the local Nusselt number decreases for 

large values of heat generation parameter Q. 
 

Table 1: Numerical values of )0,(xθ ′− and )0,(xfx ′′ for different values of x while Pr = 1.0, M = 0.0, Q = 0.0, and p = 0.0. 

 

x 

4/1−GrNu = )0,(xθ ′−  =4/1
GrC f )0,(xfx ′′  

Merkin [1] Nazar et al. [15] Present Merkin [1] Nazar et al. [15] Present 

0.0 0.4214 0.4214 0.4216 0.0000 0.0000 0.0000 

π/6 0.4161 0.4161 0.4163 0.4151 0.4148 0.4139 

π/3 0.4007 0.4005 0.4006 0.7558 0.7542 0.7528 

π/2 0.3745 0.3741 0.3741 0.9579 0.9545 0.9526 

2π/3 0.3364 0.3355 0.3355 0.9756 0.9698 0.9678 

5π/6 0.2825 0.2811 0.2811 0.7822 0.7740 0.7718 

π 0.1945 0.1916 0.1912 0.3391 0.3265 0.3239 
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Fig.2:  (a) Variation of  velocity profiles and (b) variation of temperature profiles against y for 

varying of heat generation parameter Q with Pr = 1.0, M =0.2 and p = 1.0. 
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Fig.3:  (a) Variation of the local skin friction coefficients and (b) variation of local Nusselt number 

against for varying of heat generation parameter Q with Pr = 1.0, M =0.2 and p = 1.0. 

 

The magnetic field opposes the fluid flow. As a result the velocity decreases with the increasing 

M as shown in fig. 4(a) and the peak velocity moves towards the cylinder surface. Consequently, 

the separation of the boundary layer occurs earlier and the momentum boundary layer becomes 

thicker. From Fig. 4(b) it can be observed that increasing value of the magnetic parameter 

increases the temperature in the boundary layer for a particular value of y. Thus, the magnetic 

parameter increases the thickness of the thermal boundary layer. 
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Fig.4:  (a) Variation of velocity profiles and (b) variation of temperature profiles against y for 

varying of magnetic parameter M with Pr = 1.0, Q = 0.1 and p = 1.0. 
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Fig.5:  (a) Variation of the local skin friction coefficients and (b) variation of the local Nusselt 

number against x for varying of magnetic parameter M with  Pr = 1.0, Q = 0.1 and p = 1.0. 

 

Temperature at the interface also varies with different M since the conduction is considered 

within cylinder. The variation of the local skin friction coefficient and local Nusselt number with 

Q = 0.1 and p=1.0 for different values of M at different positions are illustrated in Fig.5(a) and 

Fig.5(b). The Magnetic force opposes the flow, as mentioned earlier, and reduces the shear stress 

at the wall as illustrated in Fig.5(a). Moreover, the heat transfer rate also decreases as revealed in 

Fig.5(b). From figs. 2(b) and 4(b), it is observed that, temperature profiles begin with different 

temperatures at the interface for different values of heat generation parameter and magnetic 

parameter respectively. Clearly, the presence of heat conduction influences temperature within 

the boundary layer.  

 

Conclusion 

The effects of the heat generation parameter Q and the magnetic parameter M with Prandtl 

number Pr = 1.0 in presence of heat conduction are analysed. The velocity within the boundary 

layer increases for increasing heat generation parameter Q whereas it decreases for increasing 

magnetic parameter M. Temperature within the boundary layer increases for increasing heat 

generation parameter Q  and magnetic parameter M. The skin friction increases and heat transfer 

decreases for increasing heat generation parameter Q. On the other hand both the skin friction and 

the heat transfer rate decrease for the increasing value of magnetic parameter M. Finally, it is 

found that heat conduction has a significant influence in the temperature within the boundary 

layer; consequently, it may influence heat transfer, velocity and skin friction.  
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Nomenclature 

Symbol    Entities Dimension 

a : Outer radius of the cylinder [L] 

b : Thickness of the cylinder [L] 

0B  : Applied magnetic field [ML
2
T

-1
Q

-1
] 

Cfx : Skin friction coefficient [---] 

cp : Specific heat [L
2
θ

-1
T

-2
] 

f
 

: Dimensionless stream function [---] 

g
 

: Acceleration due to gravity [LT
-2

] 

M : Magnetic parameter [---] 

Nux : Local Nusselt number [---] 

p : Conjugate conduction resistant parameter [---] 

Pr : Prandtl number [---] 

Q : Heat generation parameter [---] 

Tf : Temperature at the boundary layer region [θ] 

Ts : Temperature of the solid of the cylinder [θ] 

Tb : Temperature of the inner cylinder [θ] 

T∞ : Temperature of the ambient fluid [θ] 

vu,
 

: Velocity components  [LT
-1

] 

vu ,
 : Dimensionless velocity components [---] 

yx ,
 

: Cartesian coordinates  [L] 

yx ,  : Dimensionless cartesian coordinates [---] 

Greek Symbols    Entities Dimension 

β : Co-efficient of thermal expansion [θ
-1

] 

ψ : Dimensionless stream function  [---] 

ρ : Density of the fluid inside the  boundary layer    [ML
-3

] 

ν : Kinematic viscosity  [L
2
T

-1
] 

µ : Viscosity of the fluid  [ML
-1

T
-1

] 

θ : Dimensionless temperature  [---] 

σ : Electrical conductivity
 

[MLT
-3

 θ
-1

] 

Kf : Thermal conductivity of the ambient fluid       [MLT
-3

 θ
-1

] 

Ks : Thermal conductivity of the ambient solid         [MLT
-3

 θ
-1

] 
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