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Abstract 

A new interior Schwarzschild solution is presented. It is static, spherically symmetric, regular 

everywhere inside a sphere of radius r1, and across the surface of this sphere it is joined 

smoothly to the exterior Schwarzschild solution. There are no radial stresses inside the sphere. 

The radius r1 is subject to the inequality r1>2m, where m is the gravitational mass of the sphere. 

Under certain conditions the new solution may be interpreted as the field inside an Einstein 

cluster. 
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1. Introduction 

The well known Schwarzschild interior solution, representing the field of a fluid sphere of 

constant density ρ, was discovered more than ninety years ago and still holds a prominent place in 

relativity theory. Schwarzschild obtained a solution for a sphere of homogeneous incompressible 

fluid [1]. His solution has been generalized for an infinite class of equivalent metrics [2]. These 

solutions demonstrate that there is an upper bound and a lower bound on the size of a sphere of 

homogeneous incompressible fluid that can exist. There is a solution for a fluid sphere of constant 

gravitational mass density
2/3 cp+ρ . As was shown by Whittaker [4], it is the expression rather 

than ρ which governs the gravitational attraction of matter, p denotes the pressure. The type of 

general relativistic model which is discussed here is necessary for very dense stars such as white 

dwarves and neutron stars where the densities are extremely high. Utilizing Schwarzschild’s 

particular solution [3] we shall extend his result to a general solution for a sphere of compressible 

fluid. At the surface of the sphere the required solution must maintain a smooth transition from 

the field outside the sphere to the field inside the sphere. Therefore, the metric for the interior and 

the metric for the exterior must attain the same value for the radius of curvature at the surface of 

the sphere. 
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2. The general interior solution for Schwarzschild’s incompressible sphere of fluid 

To determine the line element inside the sphere of matter, the solution of Einstein’s field equation 

must depend on the properties of fluid of which the sphere is composed. Schwarzschild solved 

this problem by assuming that the sphere is composed of an incompressible perfect fluid of 

proper density ρ and proper pressure P.  

 

The space-time in the interior of a charged fluid sphere in equilibrium is appropriately described 

by the metric 

)sin()()( 22222222 ϕθθ ddrdrradtrbcds +−−=                                              (2.1) 

The metric potentials b(r) and a(r) are governed by the coupled Einstein Maxwell equations  
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where the energy-momentum tensor describing the physical content of the space-time is given by 
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Since distribution of mass is static, all velocity components of fluid matter must be zero. 
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Evidently (2.6) and (2.7) are identical. Hence we have three independent equations namely (2.4), 

(2.5) and (2.6)  
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From equation (2.4) 
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Since at r → 0, 
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 → ∞, therefore to remove the singularity at r = 0, we  put  α = 0. Thus we 
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Differentiating (2.5) with respect to r and then inserting (2.9), we get 
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Subtracting (2.5) from (2.6), we get 
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Multiplying both sides by 
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Now we have to determine the constants A and B. 
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Equation (2.5) becomes 
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Using the boundary conditions                                                                                                               

P = 0 at r = r1 , where r1 is the radius of the sphere and Λ = 0 for r ≤ r1 
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The most celebrated exact solution of Einstein’s vacuum field equations is the Schwarzschild 

exterior solution. In curvature coordinates ),,,( tr ϕθ the solution takes the form 
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This is the Schwarzschild exterior solution for entirely empty world. This solution has a 

singularity at   

r = 
Λ

3
. Since Λ is very small, the value of r is very large. It represents the horizon of the world.  

The exterior and interior solutions become identical at the boundary r = r1 of the sphere. 
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Hence Schwarzschild’s interior solution is  
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The interior solution will be real only if  
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This provides as upper limit on the possible size of a sphere of a given density and on the mass of 

a sphere of given radius. 

 

3. A new interior Schwarzschild solution 

If we consider the fluid be compressible, then we can assume 
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where β and h are constants. 

The equation (2.8) becomes 
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where γ is the constant of integration. 
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where  α is a constant of integration. 

The boundary conditions are 

P = 0 at r = r1 , where r1 is the radius of the sphere and Λ = 0 for r ≤ r1 

Now (3.1) implies that ∞→1r , which represents the horizon of the universe. 
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The exterior and interior solutions become identical at the boundary r=r1 of the sphere. 
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Using the boundary conditions, we get 
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Using the boundary conditions, we get for βK= -1, β>0 
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Therefore, the interior solution is 
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4. Conclusion 

The new interior solution will be real only if r>0 and [ ]0,1−∉h .When r=0, the line element is 

undefined, and there is no possibility of a black hole, which is alleged to occur in Hilbert’s 

“Schwarzschild’s solution” with infinitely dense singularity at r =0 and event horizon at r=2m.  
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Nomenclature 

b,a ′′      Derivative of a, b with respect to r 

µν
µν gg ,               Metric tensor                                            

4

8

c

G
K

π
= , G is gravitational constant and 

                              c  is speed of light 

m            Mass of the gravitating particle 

P             Fluid pressure 

               µνR            Ricci tensor 

               R               Scalar curvature 

               r                 Radius of the sphere 

              
µ

νT              Energy tensor of matter 

              
i

u             Unit time like flow vector    

                                of the fluid 

  ρ           Matter density 

 Λ           Cosmological constant 

               
µ

νδ              Kronecker delt 
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